Целевая скорость вентилятора сколько ставить
Перейти к содержимому

Целевая скорость вентилятора сколько ставить

  • автор:

Скорость вентилятора на видеокарте. Инструкция по регулированию

Скорость вентилятора на видеокарте

Доброго времени суток, дорогие читатели. Сегодня мы с Вами разберемся, как можно регулировать скорость вентилятора на видеокарте. Эта статья, в первую очередь, будет полезна тем, кто частенько занимается разгоном видеокарт или процессоров. Ведь самое главное и основное при разгоне — это поддержание температурного режима. Иначе можно сжечь графические процессоры видеокарты.

Для контроля скорости вращение кулера мы будем пользоваться знакомой нам программой Riva Tuner. Подробнее ознакомится с ней Вы можете здесь. Предположим, что Вы уже установили программу.

Заходим во вкладку «Планировщик».

Планировщик частот

В новом открывшемся окне заходим во вкладку «Кулер», где можно как в ручном в автоматическом режиме менять скорость вращения кулера видеокарты.

Регулирование куллера

Обратите внимание, что программа автоматически определяет допустимый режим работы куллера на видеокарте. Это делается для того, что бы Вы ее не спалили. У меня, например, понизить обороты вращения вентилятора менее, чем 55%, не получается, так как, если было бы возможно, видюха сильно грелась бы. Зато менять ползунок до 100% — это пожалуйста.Как правило, увеличивают скорость кулера видеокарты только тогда, когда запускают тяжеленькую игру. Поэтому есть смысл менять ползунок в 3 поле на картинке выше (для 3D режима).Важное отступление: Ставить все на 100% мы не рекомендуем по нескольким причинам:

  1. Куллер будет сильно шуметь и отвлекать Вас от работы.
  2. Длительная эксплуатация устройства (куллера) на максимальных оборотах быстрее приведет его в негодное состояние.

Давайте определимся, как понять, что куллер уже достаточно охлаждает видеокарту. Для этого нам нужно знать ее температуру, а точнее температуру графического процессора, ведь именно он больше всех и греется.Для того, что бы узнать температуру видеокарты, можно воспользоваться специальной программой GPU-Z. В Пункте 4 показана текущая температура ядра.

Программа GPU-Z

Нормальный рабочий температурный диапазон составляет от 40 до 80 градусов по Цельсию. Тоесть, после того, как Вы повысили скорость вращение куллера, запускаете игру и смотрите в программе GPU-Z, какая температура. Если высокая (доходит до 80 градусов), то передвигайте ползунок немного повыше и опять смотрите. Однако помните, что сразу после передвижения ползунка температура моментально понизится не может.

Немного подождите. В программе GPU-Z в реальном времени отображается процесс изменения температуры. Как только процесс установится, смотрите на показатель температуры. Подобрав такой режим работы для Вашей видеокарты, Вы можете сохранить настройки через меню «Профиль куллера» (показано на рисунке выше).

Подводим итоги: Регулирование скорости куллера видеокарты — дело нехитрое, но требует значительной осторожности и выдержки. Вам стоит всего потратить 5 мин. Вашего времени, зато потом наслаждаться любимой игрой на оптимально настроенной видеокарте.

Воздушные потоки в корпусе. Что нужно знать?

В сегодняшнем материале разберём важную тему воздушных потоков в корпусе. Сравним вентиляторы разных типов и самое главное — определим, как лучше размещать радиатор жидкостного охлаждения: спереди или сверху. Измерению подвергнется и классический способ улучшения охлаждения — снятие боковой стенки.

Тестовый стенд и методика тестирования

Естественно, начать надо с корпуса. К сожалению, охватить всё их многообразие не представляется возможным, но мы возьмём этакий сборник самых популярных идей в конструировании корпуса за разумные деньги — Deepcool Matrexx 55 Mesh с сеточкой спереди. Кроме того, у него имеются четыре вентилятора в комплекте и есть возможность установить AIO или дополнительные вентиляторы сверху. Идеальный кандидат.

Дополнительно мы запаслись AIO 240 мм, бюджетным воздушным кулером и двумя пачками любимых многими вентиляторов Arctic разных видов — F12 и P12.

Итак, разместим в корпусе тестовую сборку с процессором Ryzen 9 5950X. Спокойно — мы не собираемся разгонять его или как-то подставлять скромный башенный охладитель. Но и оставлять процессор в стоке не станем, изменяющиеся частоты и напряжения испортят весь тест. Поэтому фиксируем значение частоты на 4500 МГц для всех ядер, а напряжение выставляем так, чтобы в нагрузке оно было чуть меньше 1,2 В. Получаем близкий к стоковому уровень тепловыделения около 150 Вт в стресс-тесте Aida64 с галочкой только CPU. В целом, вообще всё равно,чем создавать нагрузку для сегодняшних измерений, главное — повторяемость.

Видеокарты будет две: Radeon RX6800 со стоковым энергопотреблением 250 Вт на всю карту и GeForce RTX 3090 с возможностью греть воздух гораздо эффективнее — лимит по желанию можно расширить до 480 Вт.

Параметры видеокарт и скорость вращения их кулеров тоже фиксируем по мере возможностей, причём для 3090 выберем вариант с щадящими 380-390 Вт в бенчмарке Heaven. Именно он будет подогревать видеокарты, равномерность процесса обеспечит пауза в одной и той же сцене.

Почти всё готово. Сообщим, что память работает в xmp без дополнительных настроек, напряжение — 1,45 В. Все вентиляторы, помимо видеокарт, зафиксируем на отметке 1000 оборотов в минуту. В этом нам поможет специальный контроллер, он беспристрастно будет следить за скоростью вращения и за температурами.

Полный список комплектующих
  • Процессор: AMD Ryzen 9 5950X
  • Материнская плата: ASUS ROG Crosshair VIII Formula
  • ОЗУ: G.SKILL F4-3600C14D-32GTESA 2×16 ГБ
  • Видеокарта #1: ASUS GeForce RTX 3090 ROG STRIX
  • Видеокарта #2: AMD Radeon RX 6800
  • Охлаждение #1: Deepcool Gammaxx 400EX
  • Охлаждение #2: Deepcool Gammaxx L240T
  • Вентиляторы #1: ARCTIC P12 Value pack 5pc (ACFAN00135A)
  • Вентиляторы #2: ARCTIC F12 Value pack Black (5pc) ACFAN00248A
  • Корпус: Deepcool Matrexx 55 MESH ADD-RGB 4F
  • NVMe NVMe ADATA XPG SX8200 Pro 512 ГБ
  • NVMe sata SSD Kingston KC600 1 ТБ.
  • Блок питания: Cooler Master V850

Контролируемыми параметрами в сравнении будут: температура процессора по датчику TCtl/Tdie, температура ядер видеокарты (без учёта hotspot и памяти, это всё-таки скорее к конкретным исполнениям, а нам важна теоретическая составляющая). У оперативной памяти в зачёт берём первую планку из списка в мониторинге, вторая почти всегда будет чуть горячее, но любопытным будут доступны все важные данные мониторинга.

Завершают этот карнавал цифр два термодатчика, которые спецсредствами закреплены в стратегических точках корпуса. Первый — в верхнем углу над материнской платой, он косвенно будет показывать состояние воздуха около цепей питания и намёками сообщать об эффективности выдува из системного блока. Второй датчик размещаем под видеокартой, чтобы иметь какие-то приближённые данные о температуре воздуха, поступающего к системе охлаждения видеоускорителя.

Самое сложное — контроль комнатной температуры в это неспокойное весеннее время, целевое значение — 22 градуса, и оно почти всегда было точным по данным китайского термометра.

Проверяем стоковые значения

Фух, вроде ничего не забыли рассказать во введении, приступаем к снятию исходных данных. Вентиляторы в корпусе комплектные, на процессоре Gammax 400 EX, на нём тоже фиксированные обороты — 1000. Видеокарта — RX 6800.

Запускаем тесты, температура процессора бодро переваливает за 70 градусов, видеокарта не отстаёт.

Но стартовый рывок — не самое интересное, продолжаем наблюдение. Через 15 минут значения температур почти стабилизировались, выжидаем ещё столько же. Получасовой тест показывает очень близкие к окончательным значения, давайте на нём и остановимся, иначе всё задуманное просто не осуществить в разумные сроки.

Если честно, результаты не очень вдохновляющие. Полное энергопотребление системы во время теста — около 470 Вт. Нет, температуры процессора и видеокарты вполне в норме, а вот на памяти по датчику вне чипа уже почти 50, т.е. в таких условиях о серьёзном разгоне и высокой производительности подсистемы памяти можно забыть, лучше снизить напряжение до 1,35-1,4 и попытать счастья так.

Что ж, у нас в руках есть инструменты по улучшению охлаждения. В первую очередь это проверенный годами метод снятия боковой стенки, в данном случае — стекла. Температура сразу начинает откликаться с положительной динамикой. Через пятнадцать минут все значения, можно сказать, стабилизировались, но для эксперимента дадим системе поработать ещё 15 минут. Видно, что можно было и не ждать так долго, разница незначительная, данные точнее, но и 15-ти минут хватит для некоторых выводов.

Итак, лучше всего такой апгрейд системы охлаждения сказался на процессоре. Его ядра стали холоднее почти на 9 градусов, видеокарта потеряла 3 градуса, память — 4. Хотелось бы больше, но и это будем считать успехом, Вполне логично, что температура в верхнем углу корпуса тоже упала значительно.

Установка дополнительных вентиляторов

Следующий эксперимент: добавляем два вентилятора Arctic F12 сверху корпуса на выдув и закрываем крышку. Включать будем по очереди, сначала один и в следующем замере — второй.

С одним дополнительным вентилятором можно отметить значительное снижение температуры воздуха в верхней части корпуса, что очень даже логично — почти 6 градусов выигрыша. По остальным компонентам изменения в рамках колебаний микроклимата комнаты, но ядра процессора отклонились в другую сторону, а значит можно надеяться, что символическое улучшение — не случайность.

Продолжаем опыт, включив второй вентилятор, и теперь не регистрируем каких-то значительных изменений. Чуть-чуть подросли температуры на всём, но это из-за продолжительности теста, паузы между сессиями с верхними вентиляторами не делалось. Можно сделать вывод, что второй вентилятор сверху не вносит существенного вклада при такой конфигурации системы охлаждения и с пылевым фильтром сверху.

Самое время переходить к следующему этапу. Меняем все комплектные вентиляторы на Arctic F12, сверху оставляем только один. Итого у нас получается 5 корпусных вертушек. Все скорости снова фиксируем на 1000 оборотов в минуту и замеряем показатели после получаса теста.

Сравниваем с похожей конфигурацией из стоковых вентиляторов и одним дополнительным сверху. F, как говорится for Flow, и в названии вентиляторов она не зря. Снижение температур затронуло все измеряемые значения, в первую очередь за счёт улучшения притока свежего воздуха через переднюю панель. Именно поэтому больше всего выиграла оперативная память, снижение её температуры превысило 4 градуса, тогда как для процессора изменение составило около трёх.

Не отходим далеко от стенда, снимаем стекло и измеряем разницу со стоковыми вентиляторами. Ожидаемо её почти нет, процессорный кулер и система охлаждения видеокарты преимущественно получают воздух из бокового проёма, а память без прямого обдува может надеяться только на вентиляторы передней стенки. И тут есть улучшения, более 2х градусов, итоговые 42 градуса уже оставляют надежду на какую-то настройку ОЗУ.

Сравниваем вентиляторы F- и P-серии

Естественно, очень интересно было бы узнать различия между F серией вентиляторов, которые заточены на воздушный поток, и P серией, которые, напротив, рассчитаны на повышенное статическое давление и хороши для продувки радиаторов. Меняем, запускаем тесты, убеждаемся в важности разделения вентиляторов по задачам. P12 — отличные вентиляторы, но не как корпусные. Проигрыш по всем значениям существенный, температуры даже хуже чем у предустановленных в корпус изначально.

Печальнее всего снова наблюдать температуру памяти выше 50 градусов Цельсия.

С открытым корпусом температуры процессора и видеокарты приходят к тем же значениям, что и с любыми вентиляторами до этого. Память горячее, чем с F вертушками на 3 градуса.

Можно сделать промежуточный вывод: выбирать вентиляторы стоит не только по возможностям подсветки, но и исходя из их применения, для радиаторов смотреть на значения развиваемого давления, для корпуса — на создаваемый воздушный поток. Многие производители облегчают задачу и создают специализированные линейки вентиляторов, как, например, вышеупомянутые Arctic. F — для корпуса, P — для радиаторов.

Куда ставить AIO?

Пришло время AIO. Здравый смысл говорит, что установка её спереди или точнее на вдув здорово поможет процессору, но драматически ухудшит положение памяти и видеокарты. В то же время сверху (или на выдув) радиатор будет подогреваться тёплым воздухом корпуса, что увеличивает температуру процессора. Эти варианты оба не идеальны. Пришло время разобраться, какой стул хуже.

Устанавливаем радиатор спереди на вдув, его вентиляторы фиксируем на 1000 оборотов в минуту, высвободившийся корпусной вентилятор размещаем сверху, потому что можем. Сравниваем с воздушным кулером и корпусом, оборудованным специализированными вентиляторами F12. Да уж, Gammax 400ex безусловно хорош и действительно удивляет своей производительностью, но сейчас сходу мы получаем выигрыш в 10 градусов по процессору. Видеокарта и верхний угол тоже теряют, но всего по градусу. а вот память получает чувствительный удар по датчику. Снова около 50 градусов — мириться с этим сложно.

Продолжаем эксперимент с открытой стенкой. Разница с воздушным охлаждением в тех же условиях у процессора снижается до 6 градусов. Но хуже всего дела с оперативной памятью. Корпус потерял структурированные потоки и теперь вокруг планок создаётся тепловой мешок, отсюда и температуры на 9 градусов хуже, чем с воздушным. Видеокарта тоже цепляет немного тёплого воздуха от радиатора. Но рано делать выводы, впереди верхнее расположение радиатора.

Что имеем после получаса тестов? А ничего хорошего: температура процессора ожидаемо уползла вверх — больше семи градусов разницы с передним расположением радиатора и всего три градуса с кулером. При этом выигрыш в температурах у видеокарты и что самое обидное — у оперативной памяти, минимальный (1-2 градуса). Это какой-то позор.

С открытым корпусом ситуация чуть лучше, главное достижение — снижение температуры памяти по сравнению с передним расположением радиатора.

Получается правы были те, кто говорил, что водянку надо обязательно ставить спереди? И да, и нет! Да, в том смысле, что если ваш корпус именно такой и снабжён такого же типа пылевыми фильтрами, то результат будет похожим. Внимательные читатели наверняка заметили, что при верхнем расположении радиатора подъём температуры процессора был какой-то несоразмерно большой. Виной тому пылевой фильтр с мелкой ячейкой, он сильно режет воздушный поток и буквально душит возможности всего, что пытается совершить воздухообмен через фильтр.

Выводим эксперимент на уровень, не зависящий от размера дырок пылевых фильтров и степени продырявленности передней панели. Убираем оба этих неизвестных и получаем следующие данные.

Ядра процессора стали холоднее почти на 8 градусов. Это если сравнивать с таким же расположением радиатора, но с установленными пылевыми фильтрами. Температура оперативной памяти снизилась на 6 градусов, по видеокарте изменения не такие значительные.

Но эти числа нельзя напрямую сравнивать с полученными ранее значениями для переднего расположения радиатора, там же тоже были фильтры. Пересобираем стенд, радиатор вперёд. Сравниваем с верхним расположением AIO также без фильтров. Получаем температуру процессора ниже, но всего на 3 градуса, а вот оперативная память чувствует себя значительно хуже — плюс 6 градусов. Также страдает зона в верхнем углу — тоже плюс 6 градусов, а значит повышается нагрузка на VRM материнской платы, а самое грустное — шансы на хорошую настройку оперативной памяти снижаются заметно.

И теперь можно сделать такой вывод: если специально не создавать помехи выдуву через верхнюю часть корпуса неоптимальными пылевыми фильтрами, то установка AIO с верхним расположением на выдув будет предпочтительной. Температура видеокарты в этих двух конфигурациях различается не сильно, а вот климат внутри корпуса, а значит и температура памяти и цепей питания материнской платы, будет значительно хуже с передним радиатором на вдув. Да, с передним расположением радиатора процессор будет охлаждаться немного более эффективно, но это того не стоит.

В случае, если вопрос настройки памяти не стоит, а материнская плата выбрана с запасом по питанию, что сегодня не редкость, то размещение радиатора абсолютно не важно. Впрочем как и тип радиаторов, главное — чтобы внешний вид или возможности подсветки устраивали.

Устанавливаем видеокарту RTX 3090

На этом можно было бы и закончить, но у нас есть более горячая видеокарта. Как там обстоят дела, если у вас в корпусе установлена такая драгоценность?

Начнём, как и до этого с Радеоном, с воздушного охлаждения, но с того пункта, когда все корпусные вентиляторы были заменены на F12.

Общее потребление системника из розетки перевалило за 620 Вт, сама видеокарта уверенно отъедает более 380Вт, но температура чипа ниже чем у Радеона. Почему же мы назвали 3090 горячей? Да, температура зависит и от более высокой скорости вращения вентиляторов, но в целом называть видеокарту горячей или нет стоит от количества тепла отдаваемой ей в корпус. Посмотрите на температуру процессора, подогрев от 3090 добавил ему 17 градусов по сравнению с RX 6800 (это при прочих равных). Оперативная память тоже подогрелась — разница почти 8 градусов. Можно с уверенностью говорить, что для отвода более 600 Вт из корпуса только воздушным охлаждением стоит продумывать очень эффективный воздухообмен с окружающим миром.

Не будем терять бодрость духа и воспользуемся дедовским методом — снимаем стекло. Доступ к забортному прохладному воздуху сказывается на процессоре строго положительно — сразу минус 15 градусов. Всё равно горячее на 8 градусов, чем в аналогичной конфигурации, но с видеокартой выделяющей только 250 Вт. Но тут стоит не забывать и о поддуве горячим воздухом прямо к вентиляторам нашего Гаммакса и на память. Планки оперативной стали холоднее почти на 6 градусов из-за открытия стенки. Да, все измеряемые температуры стали сильно лучше.

Пылевые фильтры оставляем на штатных местах, переднюю стенку не трогаем, проводим замеры с передним и верхним расположением радиатора AIO. Результат абсолютно предсказуем и схож с полученным ранее на RX6800, разница температур процессора даже усилилась из-за более горячей видеокарты. С фильтрами и затруднённым выдувом вверх снова наиболее предпочтителен вариант переднего размещения радиатора. Память во всех вариантах имеет температуру близкую к 52 градусам, что совершенно ужасно.

Теперь более чистый эксперимент: убираем переднюю панель и пылевой фильтр сверху. Проводим замеры с двумя вариантами размещения радиатора, сравниваем. Процессор получает где-то 6 градусов выигрыша по температуре при переднем размещении AIO, но в то же время в такой конфигурации память горячее на 5 градусов, зона в верхнем углу тоже на 5 градусов прогревается сильнее. При этом под видеокартой разница снова небольшая — около двух градусов.

Сравнивая все за и против, можно рекомендовать избавиться от ненужного сопротивления в виде фильтров на выдув и в случае заинтересованности в разгоне памяти размещать радиатор AIO сверху.

Хотя есть ещё один вариант — поставить спец вентилятор напротив памяти и охлаждать её принудительно, тогда выводы уже не будут такими очевидными.

А по всем результатам этого длительного исследования можно сказать, что для топовых железок возможности воздушного охлаждения и даже заводских комплектов жидкостного охлаждения AIO ограничены и очень сильно зависят от продува корпуса. Уверенный воздухообмен с окружающим миром и не очень высокие комнатные температуры — чуть ли не единственный способ избежать кастомного жидкостного охлаждения. Другим вариантом будет оставить всё без разгона и пользоваться комплектующими, как говориться, “из коробки”. Как показывает практика, перегревов не будет. Или нет?

Делаем переднюю стенку «глухой»

В тесте использовался корпус с сетчатой передней панелью, но по бокам имеются узкие щели для забора воздуха. Так же как в моделях с глухими передними стенками. Давайте попробуем имитировать такой корпус: заклеиваем сеточку, теперь у вентиляторов спереди только один, а точнее два способа втянуть внутрь корпуса воздуха — слева и справа.

Радиатор AIO сверху, пылевой фильтр тоже на месте. Выдержать полчаса не позволила природная жалость к беспомощным. Если 3090 ещё худо-бедно справляется и даже после 10 минут теста держит температуру меньше 80 градусов, то процессор уверенно ушёл за сотню, память подбирается к 60. Это — не компьютер, а духовка.

Да, без пылевого фильтра сверху было бы немного получше, но реальность такова, что с глухой стенкой приток воздуха даже с включенными вентиляторами крайне низкий, фактически близкий к тому случаю, если бы этих вентиляторов там не было вовсе.

Как увеличить скорость вращения кулера на видеокарте

Современные видеокарты стремятся использовать как можно меньшую скорость вращения кулеров для того, чтобы издавать как можно меньше шума. Поэтому при низкой нагрузке они удерживают кулеры на минимальных оборотах или вовсе их полностью отключают. Естественно, при увеличении нагрузки на видеокарту и, соответственно, росте температуры, скорость вращения кулеров автоматически увеличивается, чтобы поддерживать температуру графического чипа на приемлемом уровне.

Подобный подход к управлению кулерами и температурой подходит для большинства случаев. Но, иногда возникает необходимость вручную увеличить скорость вращения кулеров видеокарты. Например, это может понадобиться при разгоне или стресс-тестировании.

Увеличение скорости вращения кулера на видеокарте

Самый простой и доступный способ увеличить скорость вращения кулеров на видеокарте – это воспользоваться программой MSI Afterburner. Это бесплатная программа, разработанная компанией MSI и доступна для скачивания с ее официального сайта.

Основное предназначение MSI Afterburner – это разгон видеокарты. С ее помощью можно изменить напряжение на графический чип, уровень потребления энергии, температурный лимит, тактовую частоту графического чипа и памяти, а также скорость вращения кулеров. Кроме этого, данная программа позволяет отслеживать FPS, а также основные параметры компьютера, прямо во время работы компьютерных игр. При этом MSI Afterburner одинаково хорошо работает как с видеокартами NVIDIA, так и с видеокартами AMD. В общем, в этой программе есть почти все, что вам может понадобиться для управления видеокартой.

Чтобы начать пользоваться MSI Afterburner вам нужно зайти на официальный сайт MSI и скачать последнюю версию программы.

загрузка MSI Afterburner

Дальше нужно распаковать скачанный архив и запустить установку программы. В процессе установки просто следуйте инструкциям, который будут появляться на экране.

установка MSI Afterburner

После окончания установки появится окно предлагающее установить программу RivaTuner Statistics Server. Соглашаемся с предложением и также устанавливаем и ее.

установка RivaTuner Statistics Server

После завершения установки запускаем программу MSI Afterburner и видим достаточно яркий и, на первый взгляд, непонятный интерфейс. Не стоит пугаться, если немного разобраться, то здесь все очень просто.

программа MSI Afterburner

В нижней части окна MSI Afterburner вы увидите ползунок, с помощью которого можно управлять кулерами видеокарты. Для того чтобы увеличить скорость вращения кулеров переместите ползунок вправо и нажмите на кнопку « Apply ». В результате вы должны услышать увеличение уровня шума от компьютера. Это явный признак того, что скорость вращения вентиляторов повысилась.

управление скоростью кулера видеокарты

Наблюдать за изменением оборотов вентилятора можно в правой части программы, где есть все нужные графики.

графики с параметрами

Также в MSI Afterburner есть 5 профилей, в которые можно сохранить разные настройки и переключаться между ними тогда, когда это необходимо.

профили в MSI Afterburner

Переключаясь между профилями, можно быстро увеличивать или уменьшать скорость вращения кулеров на видеокарте.

Управление скоростью вращения вентиляторов в зависимости от температуры

Кроме этого, программа MSI Afterburner позволяет настроить скорость вращения вентиляторов видеокарты в зависимости от температуры ее графического чипа. Для этого нужно нажать на кнопку « Settings ».

кнопка Settings

И открыть вкладку « Кулер ».

вкладка Кулер

Здесь нужно активировать опцию « Включить программный пользовательский авторежим », после чего станет возможным настройка скорости вращения вентиляторов при помощи расположенного ниже графика. На данном графике температура графического чипа видеокарты соотносится со скоростью вращения вентиляторов. Перемещая узловые точки на графике, можно настроить вентиляторы так как это требуется для ваших задач.

Включить программный пользовательский авторежим

Например, на скриншоте внизу первая узловая точка находится на уровне 50% скорости кулера и температуре 0 градусов. Это означает, что минимальная скорость кулера будет составлять 50% от максимальных оборотов.

узловая точка находится на уровне 50%

Вторая узловая точка на графике находится на уровне 60% скорости кулера и температуре 50 градусов. Это означает, что после достижения температуры в 50 градусов скорость вращения будет увеличена до 60% от максимальных оборотов.

узловая точка на уровне 60%

При необходимости график можно вернуть в исходное состояние. Для этого нужно открыть выпадающее меню « Пресет кривой скорости кулера » и выбрать вариант « Исходный ».

вариант Исходный

Для того чтобы вентиляторы начали управляться, согласно графику, нужно сохранить настройки, вернуться в главное окно программы MSI Afterburner, включить опцию « Auto » и нажать на кнопку « Apply ». Если опция «Auto» будет отключена, то MSI Afterburner будет использовать ту скорость вращения, которая указана ползунком «Fan Speed».

опция Auto

Если вы захотите сбросить указанные в MSI Afterburner настройки, то просто воспользуйтесь кнопкой « Reset ».

кнопка Reset

  • Как разогнать видеокарту через MSI Afterburner
  • Нормальная температура видеокарты
  • Как обновить драйвер видеокарты
  • Что делать если видеокарта перегревается
  • Что такое дискретная видеокарта

Создатель сайта comp-security.net, автор более 2000 статей о ремонте компьютеров, работе с программами, настройке операционных систем.

Остались вопросы?

Задайте вопрос в комментариях под статьей или на странице «Задать вопрос» и вы обязательно получите ответ.

Методика тестирования вентиляторов

Вентилятор — весьма простая вещь, однако его тестирование не такая тривиальная задача, как может показаться на первый взгляд. Для того чтобы оценить конкретный корпусной вентилятор, мы разработали методику тестирования, которая ориентирована на определение таких важных характеристик, как шум и создаваемый воздушный поток.

В компьютерной технике воздушное охлаждение до сих пор является основным методом отвода тепла от различных элементов и компонентов системы. Мобильные ПК, такие как ноутбуки, в основном обходятся единой системой охлаждения, которая отвечает за отвод тепла от самых горячих элементов. Но если говорить о настольных компьютерах, то здесь складывается несколько иная ситуация, потому что такие компьютеры, как правило, покупаются с расчетом на дальнейшую модернизацию или же изначально представляют собой высокопроизводительные системы, где активное охлаждение требуется не только процессору и видеокарте, но и остальным не менее важным компонентам. Корпуса для настольных ПК в большинстве своем имеют не одно посадочное место для установки вентиляторов различного размера. Установка этих вентиляторов должна помочь в обеспечении отвода тепла от разных внутренних компонентов ПК: системной платы, корзины дисков, видеокарты и т. д. В ряде случаев они играют лишь вспомогательную роль, однако самые мощные и высокопроизводительные настольные ПК зачастую нуждаются в них, поскольку элементы такого компьютера выделяют слишком много тепла.

Для того чтобы оценить конкретный вентилятор, необходимо выделить наиболее важные характеристики исследуемой модели. На наш взгляд, такими характеристиками являются шум и производительность, выраженная в создаваемом вентилятором воздушном потоке. Совокупность этих двух параметров может охарактеризовать вентилятор, что позволит сравнивать разные модели между собой.

Условия и инструменты тестирования

Вентиляторы имеют два типа управления скоростью вращения крыльчатки: с помощью управляющего сигнала с широтно-импульсной модуляцией (ШИМ) и/или с помощью изменения напряжения питания в диапазоне от минимального, при котором крыльчатка еще вращается, до номинального (в случае компьютерных вентиляторов это обычно 12 В). При управлении конкретным вентилятором на практике чаще применяется только один из способов, но может применяться и их комбинация. Согласно спецификациям Intel («4-Wire Pulse Width Modulation (PWM) Controlled Fans»), управляющий сигнал должен иметь номинальную частоту 25 кГц, номинальное напряжение 5 В, а скорость вращения регулируется величиной коэффициента заполнения (КЗ), при этом КЗ = 100% отвечает максимальной скорости вращения. В зависимости от конкретной ситуации может применяться как динамическое управление скоростью вращения вентиляторов (например, автоматическое в зависимости от текущей величины нагрева каких-то компонентов ПК), так и статическое (например, вентилятор может быть подключен к источнику напряжения 5 или 7 В вместо номинальных 12 В). В случае потребительских ПК корпусные вентиляторы и вентиляторы, установленные на радиаторах кулеров или СЖО, всегда или бо́льшую часть времени эксплуатируются на пониженных оборотах со сниженной производительностью по воздушному потоку с целью улучшения эргономики — чтобы снизить общий шум от работы ПК.

Зависит, конечно, от индивидуальных особенностей пользователя и других факторов, но в случае вентиляторов и кулеров где-то от 40 дБА и выше шум, с нашей точки зрения, очень высокий для настольной системы, от 35 до 40 дБА уровень шума относится к разряду терпимых, ниже 35 дБА шум от системы охлаждения не будет сильно выделяться на фоне остальных небесшумных компонентов ПК, а где-то ниже 25 дБА вентилятор или кулер можно назвать условно бесшумным.

Чтобы обеспечить одинаковые условия тестирования всех исследуемых моделей вентиляторов, мы постарались свести к минимуму вариацию условий, при которых проводятся измерения. Температура окружающего воздуха в ходе тестирования поддерживается на уровне 22-24 °C. По возможности сохраняется идентичным расположение предметов, могущих оказывать влияние на результаты. Применяются одни и те же измерительные приборы, а при необходимости замены новый прибор сравнивается с предыдущим и в случае значимых расхождений выполняется построение калибровочной зависимости, приводящей показания нового прибора к старому, так как в данном случае важнее обеспечить воспроизводимость результатов, а не абсолютную точность измеряемых величин.

Для формирования управляющего сигнала с ШИМ и регулировки напряжения питания вентилятора, отслеживания фактических значений напряжения и тока, снятия показаний с датчика вращения вентилятора, крыльчатого анемометра, датчиков давления и температуры применяется специально изготовленный контроллер, подключаемый к ПК по USB. Регистрация данных и управление контроллером осуществляются с помощью специального ПО.

Для определения создаваемого вентилятором воздушного потока в варианте с повышенным воздушным сопротивлением мы использовали доработанный анемометр Mastech MS6250. Доработка заключалась в подключении датчика вращения крыльчатки к указанному выше контроллеру для автоматизации снятия показаний. Измерение скорости воздушного потока производилось с помощью специальной камеры, в основе которой лежит обычный пластиковый таз. С одной стороны через переходную пластину к этой камере прикрепляется тестируемый вентилятор. Диаметр отверстия в этой пластине равен внутреннему диаметру рамки вентилятора. При необходимости между рамкой вентилятора и пластиной устанавливается герметизирующая прокладка или применяется замазка.

А с другой стороны камеры в отверстие, равное внутреннему диаметру кожуха крыльчатки анемометра, устанавливается измерительная головка анемометра.

Модели вентиляторов, различающиеся по размерам, крепятся к камере с помощью различных переходных пластин таким образом, чтобы сохранять герметичность камеры и не заужать рабочий диаметр вентилятора. Вентилятор работает на выдув из камеры, то есть создает в ней разрежение. Измерение скорости потока на входе в камеру позволяет избежать влияния вихревых потоков, генерируемых крыльчаткой вентилятора в выдуваемом потоке воздуха. Отметим, что такая камера позволяет измерять воздушный поток у вентиляторов различного типоразмера. Однако полученные в результате этих измерений данные можно использовать только для сравнения вентиляторов одинакового типоразмера, так как создаваемое входным отверстием и крыльчаткой анемометра воздушное сопротивление постоянно и не меняется. В условиях же реальной эксплуатации вентилятор большего размера обычно нагружается пропорционально меньше: например, устанавливается на решетку большего размера или на соответствующее диаметру крыльчатки отверстие.

Указываемые в технических характеристиках вентиляторов значения производительности или объемного расхода (чаще всего в м³/ч или в кубических футах в минуту, CFM — cubic feet per minute) будут отличаться от полученных описанным выше способом значений, так как измерения производятся различными способами и другими измерительными приборами. При этом очевидно, что производитель приводит данные по расходу, полученные в условиях свободного потока воздуха (если не указано иное), когда создаваемое вентилятором статическое давление равно нулю. В реальности (как и в условиях нашего теста) движению воздуха от и/или к вентилятору всегда всегда создается какое-то сопротивление, и поток воздуха будет гораздо меньше приведенного производителем на коробке с вентилятором. К сожалению, в случае компьютерных вентиляторов зависимости давления от объемного расхода обычно не приводятся.

Дополнительно мы измеряем величину разрежения, создаваемого тестируемым вентилятором в этой камере. Используется дифференциальный датчик давления SDP610-25Pa компании Sensirion. Датчик подключен к камере с помощью гибкого шланга. Измерения давления проводятся во время определения производительности вентилятора, но в результатах мы приводим только максимальное статическое давление. Эта величина определяется при нулевом расходе воздуха, когда вместо крыльчатки анемометра на входное отверстие камеры установлена заглушка.

Чем выше максимальное статическое давление, тем лучше будет работать вентилятор в условиях большого сопротивления, например при прокачивании воздуха через плотный и/или забитый пылью фильтр.

В случае, если на максимальной скорости вращения вентилятора статическое давление выше предела измерений для данного датчика (а это 25 Па), выполняется ряд замеров на скоростях, когда давление ниже этого предела, а для расчета итогового значения максимального статического давления применяется нелинейная экстраполяция.

С нашей точки зрения, описанные выше условия для определения производительности вентилятора, то есть величины создаваемого им воздушного потока, хорошо соответствуют реальным условиям работы вентиляторов в типичном потребительском ПК, так как в современных условиях часто используются относительно плотные противопылевые фильтры и радиаторы воздушных или жидкостных систем охлаждения с высокой плотностью рассеивающих тепло пластин. Однако в некоторых случаях от вентилятора может потребоваться создать высокий воздушный поток в условиях с небольшим сопротивлением. Также производители предлагают модели вентиляторов, оптимизированных для создания высокого потока при небольшом давлении. Чтобы сравнивать вентиляторы в условиях низкого сопротивления и корректно тестировать такие модели вентиляторов, мы собрали второй стенд для определения воздушного потока.

Для выравнивания воздушного потока и уменьшения влияния турбулентности, создаваемой вентилятором, мы использовали круглый пластиковый канал длиной 1 м и внутренним диаметром 200 мм.

На одном конце канала с помощью все той же переходной пластины закрепляется тестируемый вентилятор, установленный так, чтобы втягивать воздух из канала.

На другом конце закреплен термоанемометр testo 405 i с обогреваемой струной. Зонд анемометра располагается в центре вентиляционного канала.

Использование анемометра с обогреваемой струной позволяет создавать пренебрежимо малое дополнительное сопротивление воздушному потоку, также подобные анемометры, в отличие от анемометров с крыльчаткой, хорошо работают в условиях с невысокими скоростями воздушного потока. Показания с этого анемометра снимаются по Bluetooth с помощью мобильного приложения.

Измерение уровня шума проводится в специальной звукоизолированной и заглушенной камере. Микрофон высокочувствительного шумомера Октава-110А-Эко располагается в 21 см от верхнего торца рамки вентилятора.

Такое расположение микрофона было выбрано для того, чтобы не привязываться к габаритам тестируемого вентилятора и исключить влияние вихревых потоков на получаемую величину уровня звукового давления. Вентилятор подвешивается на упругом подвесе с низкой резонансной частотой для исключения резонансных явлений, которые могут появляться в случае жесткого крепления вентилятора. Стоит отметить, что полученные нами данные нельзя сравнивать с уровнем шума, указанным в технических характеристиках вентиляторов, так как производители используют собственные методики (и обычно даже не указывают, какие). Но наши результаты можно применять для сравнения уровня шума различных моделей вентиляторов — правда, лучше сравнивать между собой модели одинакового типоразмера. Согласно нашим замерам, при отсутствии источников шума показания шумомера в звукопоглощающей комнате составляют 16,9-17,9 дБА в зависимости от окружающей камеру обстановки. Линейный рабочий диапазон шумомера для используемого микрофона начинается от 22 дБА, но в пределах от текущего фонового уровня шума до 22 дБА показания шумомера можно использовать для качественного сравнения уровня шума (громче—тише), не принимая уровень звукового давления за абсолютную величину. В качестве характеристики шумности вентилятора при текущей скорости вращения мы используем минимальный уровень звука с частотной коррекцией типа А и временно́й характеристикой усреднения «10 с».

При определении зависимости скорости вращения вентилятора от величины КЗ ШИМ величина КЗ уменьшается от 100% до 0% или до остановки вентилятора, как правило с шагом 5%. При определении зависимости скорости вращения вентилятора от величины напряжения питания напряжение уменьшается от 12 В до остановки вентилятора, как правило с шагом 0,5 В. Дополнительно определяются напряжения остановки и запуска при изменении напряжения с шагом 0,1 В и КЗ остановки и запуска при изменении КЗ с шагом 1% (если при 0% вентилятор останавливается). За запуск принимается состояние равномерного и долговременного вращения крыльчатки. Одновременное изменение КЗ и напряжения в тестах обычно не выполняется. Вентилятор в этих тестах работает в ненагруженном (свободном) состоянии. Замеры объемной производительности и уровня шума проводятся в случае вентиляторов, допускающих управление с помощью ШИМ, только с помощью изменения КЗ (от 100% с шагом 10%), в других случаях — только с помощью изменения напряжения питания (от 12 В и ниже с шагом в 1 В). В зависимости от ситуаций могут быть отступления от этих правил.

Отметим, что замеры уровня шума, в отличие от определения производительности в нагруженном состоянии (в камере с анемометром с крыльчаткой), выполняются без аэродинамической нагрузки, поэтому скорость вращения вентилятора обычно немного выше (где-то на 6:-7% максимум) во время измерения шума при тех же входных параметрах (напряжение питания или коэффициент заполнения ШИМ). Как правило, этим различием мы пренебрегаем и считаем, что уровень шума соответствует величине производительности, полученной при тех же значениях КЗ или напряжения питания. В случае больших различий (от 10% и выше) для расчета уровня шума при требуемой скорости вращения может применяться нелинейная интерполяция.

Повторим, что при тестировании кулеров и теперь вентиляторов мы применяем следующую субъективную шкалу:

Уровень шума, дБА Субъективная оценка уровня шума для компонента ПК
выше 40 очень громко
35—40 терпимо
25—35 приемлемо
ниже 25 условно бесшумно

В современных условиях и в потребительском сегменте эргономика, как правило, имеет приоритет над производительностью, поэтому за целевой уровень шума мы примем значение в 25 дБА. Теперь для оценки вентиляторов достаточно сравнивать их производительность при данном уровне шума, что гораздо проще, чем сравнение зависимостей уровня шума от производительности.

Таким образом, можно выделить следующие этапы инструментального тестирования вентиляторов (они не обязательно выполняются в указанной последовательности):

  1. Определение зависимости скорости вращения вентилятора от коэффициента заполнения ШИМ и/или напряжения питания. Итог — графики зависимости скорости вращения от КЗ и напряжения.
  2. Определение напряжения и/или КЗ остановки и запуска. Итог — пары значений КЗ и напряжения.
  3. Определение объемной производительности в нагруженных условиях. Итог — график зависимости производительности от скорости вращения.
  4. Определение объемной производительности условиях минимальной нагрузки. Итог — график зависимости производительности от скорости вращения.
  5. Определение уровня шума. Итог — график зависимости уровня шума от скорости вращения.
  6. Построение зависимости уровня шума от производительности. Итог — два графика зависимости уровня шума от производительности в условиях высокой и низкой нагрузки.
  7. Определение производительности при 25 дБА. Итог — два значения производительности в условиях высокой и низкой нагрузки.
  8. Определение максимального статического давления. Итог — значение максимального статического давления.

Итоги

Для оперативного и, конечно, оценочного сравнения вентиляторов мы предлагаем использовать три значения, определяемые для каждого вентилятора: производительность при 25 дБА в условиях высокого и низкого сопротивления, а также максимальное статическое давление. С нашей точки зрения, самой полезной является первая величина, так как она позволяет понять, насколько производительным будет вентилятор при работе в типичных условиях, когда шумом от его работы можно пренебречь. Возможно, для единообразия максимальное статическое давление также нужно пересчитывать на уровень шума 25 дБА или указывать максимальную производительность в условиях низкого сопротивления, так как в паспортных характеристиках обычно приводится эта величина и величина максимального статического давления.

По мере накопления данных, полученных по новой методике, мы будем представлять диаграммы с результатами, сгруппированные по вентиляторам одного типоразмера. В качестве примера можно рассмотреть статью про вентиляторы Riing Trio 12 LED RGB Radiator Fan TT Premium Edition компании Thermaltake. Комментарии и предложения приветствуются.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *