Gfx core voltage что это
Перейти к содержимому

Gfx core voltage что это

  • автор:

Описание названий напряжений на материнских платах.

Даже базовые материнские платы предоставляют несколько производных величин помимо основного напряжения, а в моделях класса high-end этих значений несметное количество. Порой даже опытным энтузиастам разгона трудно понять значение того или иного параметра. Мы постараемся объяснить все эти значения напряжений на понятном языке.

Первыми в данном вопросе путаницу вносят производители материнских плат. Производители CPU и наборов микросхем тоже дают официальные названия всех напряжений, каждый производитель материнских плат, по непонятным причинам, присваивает им свои названия. В мануалах к платам производитель обычно не объясняет значение того или иного названия. Сначала рассмотрим, какие названия напряжений производители CPU дают своим продуктам.

Процессоры производства Intel используют следующие напряжения (официальные названия):

VCC. Основное напряжение CPU, которое неофициально может называться, как Vcore. Обычно, когда говорят “напряжение центрального процессора”, то имеют в виду данную величину. Опция, которая управляет данным напряжением на материнских платах, может называться “CPU Voltage”, “CPU Core”, и т.д.

VTT. Напряжение, подаваемое на интегрированный контроллер памяти (для CPU, где есть этот компонент), на шину QPI (также, если таковая имеется в процессоре), на шину FSB (для CPU на данной архитектуре), на кэш памяти L3 (если присутствует), на шину контроля температуры (PECI, Platform Environmental Control Interface, если данная особенность присутствует в CPU), а также на другие схемы, в зависимости от модели и семейства CPU. Важно понять, что на процессорах AMD “VTT” обозначается другое напряжение, а VTT на процессорах Intel — это эквивалент VDDNB на процессорах AMD. Данное напряжение изменяться посредством опций “CPU VTT”, “CPU FSB”, “IMC Voltage” и “QPI/VTT Voltage”.

VCCPLL. Напряжение, используемое в CPU, для синхронизации внутренних множителей (PLL, Фазовая автоматическая подстройка частоты). Это напряжение может быть изменено с помощью “CPU PLL Voltage”.

VAXG. Напряжение, подаваемое на видеоконтроллер, интегрированный в CPU. Доступно на Pentium G6950, Core i3 5xxx и Core i5 6xx процессоры. Эта опция может называться “Graphics Core”, “GFX Voltage”, “IGP Voltage”, “IGD Voltage” и “VAXG Voltage”.

CPU clock voltage. Некоторые материнские платы позволяют Вам менять напряжение базовой частоты CPU. Это можно делать через опции, называемые “CPU Clock Driving Control” or “CPU Amplitude Control”.

Процессоры Intel. Напряжения, относящиеся к памяти. В то время, как у всех процессоров производства AMD есть встроенный контроллер памяти, то у процессоров Intel, эта особенность присутствует только у более новых моделей (Core i3, Core i5 и Core i7). Поэтому установка напряжений, относящихся к памяти, может быть произведена через настройки CPU или северного моста в составе набора микросхем (MCH, Memory Controller Hub), в зависимости от Вашей платформы. По этой причине напряжения и были разнесены на две группы.

На шине памяти может присутствовать три различных вида напряжений:

VDDQ. Сигнальное напряжение на шине памяти. JEDEC (организация, стандартизирующая память) называет эту величину напряжением SSTL (Stub Series Termination Logic). Это распространенная величина напряжения памяти, и она может скрываться за следующими названиями: “DIMM Voltage”, “DIMM Voltage Control”, “DRAM Voltage”, “DRAM Bus Voltage”, “Memory Over-Voltage”, “VDIMM Select”, “Memory Voltage” и т.д. Значение по умолчанию для этой линии 1.8 в для памяти DDR2 (SSTL_1.8) или 1.5 в для DDR3 (SSTL_1.5).

Termination voltage. Напряжение, подаваемое на логические схемы в чипах памяти. По умолчанию данное напряжение устанавливается, как половина значения напряжения

VDDQ/SSTL (основное напряжение на памяти). Эта опция может быть обозначена как “Termination Voltage” or “DRAM Termination”. Обратите внимание, что для процессоров AMD это напряжение называется VTT, а в случае с процессорами Intel, VTT — это вторичное напряжение процессора (см. предыдущую страницу).

Reference voltage. Референсное напряжение, которое определяет уровень напряжения на контроллере памяти и модулях памяти. При определенном значении Reference voltage напряжения на шине памяти ниже определяются как “0”, а выше этого значения, как “1”. По умолчанию значение Reference voltage составляет половину напряжения SSTL (коэффициент 0.500x), но некоторые материнские платы позволяют Вам изменять это отношение, обычно посредством опций “DDR_VREF_CA_A”, “DRAM Ctrl Ref Voltage” и т.п. “CA”, “Ctrl” and “Address” относятся к линиям управления шины памяти (официальное название JEDEC для этого напряжения — VREFCA). “DA” and “Data” относятся к линиям данных шины памяти (официальное название JEDEC для этого напряжения — VREFDQ). Эти опции настраиваются при помощи установки коэффициента. Например, значение “0.395x” означает, что референсное напряжение будет равно 0.395 от величины напряжения SSTL. Обычно, материнские платы на платформе Intel, позволяют Вам управлять этими напряжениями раздельно для каждого канала памяти. Таким образом, опция “DDR_VREF_CA_A” определяет референсное напряжение для канала A, а “DDR_VREF_CA_B” тоже самое для канала B.

Процессоры Intel. Напряжения, относящиеся к набору микросхем. Опции, связанные с набором микросхем, включают все напряжения, которые не были описаны на предыдущей странице:

North bridge voltage. Это напряжение, которое подается на северный мост в составе набора микросхем системной платы. Отметим, что Intel называют северный мост, как MCH (Memory Controller Hub, на материнских платах для процессоров без интегрированного контроллера памяти), IOH (I/O Hub, на материнских платах, под CPU со встроенным контроллером памяти. Реализация набора микросхем в двух чипах) или PCH (Platform Controller Hub, на материнских платах, где CPU также имеет интегрированный контроллер памяти, но набор микросхем реализован в виде одного чипа). Таким образом, название данной опции может немного изменяться в зависимости от платформы. В случае наборов микросхем PCH существует два отдельных напряжения, VccVcore (обычно обозначается в настройках материнской платы как PCH 1.05 V или PCH PLL Voltage и является основным напряжением чипа), а также напряжение VccVRM (такие опции, как PCH 1.8 V или PCH PLL Voltage регулируют напряжение, подаваемое на внутренние множители чипа).

South bridge voltage. Напряжение, подаваемое на чип южного моста. Intel называют чип южный моста — ICH (I/O Controller Hub). Название опции, отвечающей за установку данного напряжения, может быть “SB Voltage” and “ICH Voltage”.

PCI Express voltage. Если Вы хотите изменить напряжение PCI Express, то нужно будет сначала определить, каким образом в Вашей системе управляются слоты и линии PCI Express. Например, некоторые CPU от Intel, могут управлять одной x16 или двумя x8 PCI Express линиями для подключения для видеокарт, а низкоскоростными PCI Express управляет набор микросхем (PCH). На некоторых других платформах управление слотами PCI Express для видеокарт осуществляется северным мостом (MCH или IOH), в то время как низкоскоростными PCI Express, управляет чип южного моста (ICH). Напряжение, используемое на линиях PCI Express, обычно, регулируется аппаратно, поэтому оно автоматически изменяется при изменении напряжений CPU, северного (PCH/MCH) или южное моста, в зависимости от того, где реализовано управление линиями PCI Express. В некоторых наборах микросхем (например, Intel X58) есть возможность устанавливать напряжения для линий PCI Express. На материнских платах, основанных на таких чипсетах, Вы найдете специальные опции для установки напряжения PCI Express. Например, “IOHPCIE Voltage” изменяет напряжение линий PCI Express, которым управляет северный мост материнской платы (IOH). А при помощи такой опции, как “ICHPCIE Voltage” можно устанавливать напряжение линий ICHPCIE Voltage, которыми управляет южный мост материнской платы (ICH).

PCI Express clock voltage. Некоторые материнские платы позволяют Вам устанавливать напряжение элементов, отвечающих за частоту шины PCI Express. Данный параметр может называться “PCI-E Clock Driving Control” или “PCI Express Amplitude Control”.

Описание напряжений на материнских платах — процессоры Intel.

Одним из самых распространенных способов отодвинуть предел разгона того или иного компонента, является увеличение подаваемого на него напряжения. Но в настоящее даже базовые материнские платы предоставляют несколько производных величин помимо основного напряжения, а в моделях класса high-end этих значений несметное количество. Порой даже опытным энтузиастам разгона трудно понять значение того или иного параметра.

Первыми в данном вопросе путаницу вносят производители материнских плат. Притом, что производители CPU и наборов микросхем дают официальные названия всех напряжений, каждый производители материнских плат, по непонятным причинам, присваивают им свои названия. И что самое интересное, в мануалах к платам производитель не объясняет значение того или иного параметра. Зачастую объяснение в руководстве к материнской плате ограничивается простым повторением, что эта величина позволяет менять эту «величину».

Чтобы лучше понять информацию о различных напряжениях материнской платы, сначала рассмотрим, какие названия напряжений производители CPU дают своим продуктам.

Процессоры производства Intel используют следующие напряжения (приводятся официальные названия):

VCC. Основное напряжение CPU, которое неофициально может называться, как Vcore. Обычно, когда говорят “напряжение центрального процессора”, то имеют в виду данную величину. Опция, которая управляет данным напряжением на материнских платах, может называться “CPU Voltage”, “CPU Core”, и т.д.

VTT. Напряжение, подаваемое на интегрированный контроллер памяти (для CPU, где есть этот компонент), на шину QPI (также, если таковая имеется в процессоре), на шину FSB (для CPU на данной архитектуре), на кэш памяти L3 (если присутствует), на шину контроля температуры (PECI, Platform Environmental Control Interface, если данная особенность присутствует в CPU), а также на другие схемы, в зависимости от модели и семейства CPU. Важно понять, что на процессорах AMD “VTT” обозначается другое напряжение, а VTT на процессорах Intel — это эквивалент VDDNB на процессорах AMD. Данное напряжение изменяться посредством опций “CPU VTT”, “CPU FSB”, “IMC Voltage” и “QPI/VTT Voltage”.

VCCPLL. Напряжение, используемое в CPU, для синхронизации внутренних множителей (PLL, Фазовая автоматическая подстройка частоты). Это напряжение может быть изменено с помощью “CPU PLL Voltage”.

VAXG. Напряжение, подаваемое на видеоконтроллер, интегрированный в CPU. Доступно на Pentium G6950, Core i3 5xxx и Core i5 6xx процессоры. Эта опция может называться “Graphics Core”, “GFX Voltage”, “IGP Voltage”, “IGD Voltage” и “VAXG Voltage”.

CPU clock voltage. Некоторые материнские платы позволяют Вам менять напряжение базовой частоты CPU. Это можно делать через опции, называемые “CPU Clock Driving Control” or “CPU Amplitude Control”.

Процессоры Intel. Напряжения, относящиеся к памяти.

В то время, как у всех процессоров производства AMD есть встроенный контроллер памяти, то у процессоров Intel, эта особенность присутствует у более новых моделей (Core i3, Core i5 и Core i7). Поэтому установка напряжений, относящихся к памяти, может быть произведена через настройки CPU или северного моста в составе набора микросхем (MCH, Memory Controller Hub), в зависимости от Вашей платформы. По этой причине напряжения и были разнесены на две группы.

На шине памяти может присутствовать три различных вида напряжений:

VDDQ. Сигнальное напряжение на шине памяти. JEDEC (организация, стандартизирующая память) называет эту величину напряжением SSTL (Stub Series Termination Logic). Это распространенная величина напряжения памяти, и она может скрываться за следующими названиями: “DIMM Voltage”, “DIMM Voltage Control”, “DRAM Voltage”, “DRAM Bus Voltage”, “Memory Over-Voltage”, “VDIMM Select”, “Memory Voltage” и т.д. Значение по умолчанию для этой линии 1.8 в для памяти DDR2 (SSTL_1.8) или 1.5 в для DDR3 (SSTL_1.5).

Termination voltage. Напряжение, подаваемое на логические схемы в чипах памяти. По умолчанию данное напряжение устанавливается, как половина значения напряжения

VDDQ/SSTL (основное напряжение на памяти). Эта опция может быть обозначена как “Termination Voltage” or “DRAM Termination”. Обратите внимание, что для процессоров AMD это напряжение называется VTT, а в случае с процессорами Intel, VTT — это вторичное напряжение процессора (см. предыдущую страницу).

Reference voltage. Референсное напряжение, которое определяет уровень напряжения на контроллере памяти и модулях памяти. При определенном значении Reference voltage напряжения на шине памяти ниже определяются как “0”, а выше этого значения, как “1”. По умолчанию значение Reference voltage составляет половину напряжения SSTL (коэффициент 0.500x), но некоторые материнские платы позволяют Вам изменять это отношение, обычно посредством опций “DDR_VREF_CA_A”, “DRAM Ctrl Ref Voltage” и т.п. “CA”, “Ctrl” and “Address” относятся к линиям управления шины памяти (официальное название JEDEC для этого напряжения — VREFCA). “DA” and “Data” относятся к линиям данных шины памяти (официальное название JEDEC для этого напряжения — VREFDQ). Эти опции настраиваются при помощи установки коэффициента. Например, значение “0.395x” означает, что референсное напряжение будет равно 0.395 от величины напряжения SSTL. Обычно, материнские платы на платформе Intel, позволяют Вам управлять этими напряжениями раздельно для каждого канала памяти. Таким образом, опция “DDR_VREF_CA_A” определяет референсное напряжение для канала A, а “DDR_VREF_CA_B” тоже самое для канала B.

Процессоры Intel. Напряжения, относящиеся к набору микросхем.

Опции, связанные с набором микросхем, включают все напряжения, которые не были описаны ранее:

— North bridge voltage. Это напряжение, которое подается на северный мост в составе набора микросхем системной платы. Отметим, что Intel называют северный мост, как MCH (Memory Controller Hub, на материнских платах для процессоров без интегрированного контроллера памяти), IOH (I/O Hub, на материнских платах, под CPU со встроенным контроллером памяти. Реализация набора микросхем в двух чипах) или PCH (Platform Controller Hub, на материнских платах, где CPU также имеет интегрированный контроллер памяти, но набор микросхем реализован в виде одного чипа). Таким образом, название данной опции может немного изменяться в зависимости от платформы. В случае наборов микросхем PCH существует два отдельных напряжения, VccVcore (обычно обозначается в настройках материнской платы как PCH 1.05 V или PCH PLL Voltage и является основным напряжением чипа), а также напряжение VccVRM (такие опции, как PCH 1.8 V или PCH PLL Voltage регулируют напряжение, подаваемое на внутренние множители чипа).

— South bridge voltage. Напряжение, подаваемое на чип южного моста. Intel называют чип южный моста — ICH (I/O Controller Hub). Название опции, отвечающей за установку данного напряжения, может быть “SB Voltage” and “ICH Voltage”.

— PCI Express voltage. Если Вы хотите изменить напряжение PCI Express, то нужно будет сначала определить, каким образом в Вашей системе управляются слоты и линии PCI Express. Например, некоторые CPU от Intel, могут управлять одной x16 или двумя x8 PCI Express линиями для подключения для видеокарт, а низкоскоростными PCI Express управляет набор микросхем (PCH). На некоторых других платформах управление слотами PCI Express для видеокарт осуществляется северным мостом (MCH или IOH), в то время как низкоскоростными PCI Express, управляет чип южного моста (ICH). Напряжение, используемое на линиях PCI Express, обычно, регулируется аппаратно, поэтому оно автоматически изменяется при изменении напряжений CPU, северного (PCH/MCH) или южное моста, в зависимости от того, где реализовано управление линиями PCI Express. В некоторых наборах микросхем (например, Intel X58) есть возможность устанавливать напряжения для линий PCI Express. На материнских платах, основанных на таких чипсетах, Вы найдете специальные опции для установки напряжения PCI Express. Например, “IOHPCIE Voltage” изменяет напряжение линий PCI Express, которым управляет северный мост материнской платы (IOH). А при помощи такой опции, как “ICHPCIE Voltage” можно устанавливать напряжение линий ICHPCIE Voltage, которыми управляет южный мост материнской платы (ICH).

— PCI Express clock voltage. Некоторые материнские платы позволяют Вам устанавливать напряжение элементов, отвечающих за частоту шины PCI Express. Данный параметр может называться “PCI-E Clock Driving Control” или “PCI Express Amplitude Control”.

GPU Graphics Voltage Offset

Возможные варианты значений:
Auto — Напряжение питания графического ядра автоматически выбирается системой.
0,001V — 0,999V — Ручная установка смещения с шагом 0,001V.

Зависимости:
— Auto
— 0,001V — 0,999V
Просмотров: 2985
Пожалуйста, поставьте оценку:
нет оценок

ВКонтакт Facebook Одноклассники Twitter Яндекс Livejournal Liveinternet Mail.Ru

КОММЕНТАРИИ к «GPU Graphics Voltage Offset»

Чтобы оставить комментарий, вам необходимо зарегистрироваться на сайте.

ДРУГИЕ МАТЕРИАЛЫ ПО ТЕМЕ

Проявления неисправностей, связанных с данным параметром (0)

Дата размещения
Название неисправности
Категория причин
Степень охвата

IT-WIKI (2)

ID материала: 7833 / Дата публикации: 27.06.2018 / Просмотров: 353

Advanced Power Management (APM) — это технический стандарт управления питанием, разработанный Intel и Microsoft и выпущенный в 1992 году, который позволяет операционной системе IBM-совместимого персонального компьютера взаимодействовать с BIOS с целью управления питанием компонентов компьютера.

APM является предшественником ACPI (Advanced Configuration and Power Interface) — усовершенствованного интерфейса управления питанием и конфигурацией компьютера.

G0, G1, G2, G3, S0, S1, S2, S3, S4, S5, D0, D1, D2, D3, P0, P1, P2, P3 /

ID материала: 10338 / Дата публикации: 20.11.2015 / Просмотров: 1483

ACPI является последователем Advanced Power Management (APM), появившимся в 1992 году. Позволяет управлять питанием компьютера непосредственно операционной системе, в то время, как APM давала такую возможность только через взаимодействие с BIOS. ACPI предоставляет возможность ядру ОС управлять компонентами компьютера посредством специальных инструкций (или методов), которые предоставляются через системное встроенное программное обеспечение (UEFI или BIOS). В зависимости от действий О.

Параметры BIOS (123)

Название (синонимы) параметра
Назначение параметра
Варианты значений параметра
Особенности значений параметров и их влияние на работу компьютера
Раздел управления событиями выхода компьютера из режима сна.

Параметр позволяет выходить компьютеру из режима энергосбережения S5 (компьютер выключен, работает только блок питания) в указанные дату и время.

— Disabled
— Enabled

Описание значений параметров:

Disabled — параметр отключен,
Enabled — параметр включен. Доступны опции настройки даты и времени пробуждения: Wakeup Date, Wakeup Hour, Wakeup Minute, WakeupSecond

— S4/S5 Wake on LAN

Параметр позволяет компьютеру выходить из энергосберегающих режимов S4/S5 по сигналу из локальной сети

— Disabled
— Enabled

Описание значений параметров:

Disabled — выход запрещен,
Enabled — выход разрешен.

Параметр, позволяющий выходить компьютеру из режима энергосбережения при установке USB-разъем какого-либо устройства.

— Enabled
— Disabled

Описание значений параметров:

Enabled — пробуждение при подключении USB-устройства включено.
Disabled — пробуждение отключено.

Параметр, включающий/отключающий индикацию светодиодом (Power LED) спящего режима, когда в нем находится компьютер.

— Enabled
— Disabled

Описание значений параметров:

Enabled — индикация включена.
Disabled — индикация отключена.

Особенности:

В зависимости от уровня состояния энергосбережения будет разная индикация:

S0 — индикатор горит зеленым цветом.

S3 — 3 мигания с частотой 1 Гц (индикатор горит 50% времени), затем пауза 2 секунды (зеленый индикатор), то есть повторяющиеся циклы из трех миганий и паузы.

S4 — 4 мигания с частотой 1 Гц (индикатор горит 50% времени), затем пауза 2 секунды (зеленый индикатор), то есть повторяющиеся циклы из четырех миганий и паузы.

S5 — индикатор не горит.

Параметр определяет нижний порог напряжения питания какой-либо из линий (12, 5 или 3,3 В) при достижении которого, или при переходе которого будет сгенерировано предупреждение. Для мониторинга необходимо дополнительное программное обеспечение от производителя материнской платы или другое совместимое.

Описание значений параметров:

X — значение в вольтах.

Параметр задает секунду, когда компьютер будет включаться.

Описание значений параметров:

X — значение секунды от 0 до 59.

Параметр задает минуту, когда компьютер будет включаться.

Описание значений параметров:

X — значение минуты от 0 до 59.

Параметр задает час, когда компьютер будет включаться.

Описание значений параметров:

X — значение часа от 0 до 23. Если равно 0, то компьютер будет включен в полночь

Данный параметр (обратная связь при перегреве) определяет, должен ли процессор сбрасывать частоту (троттлинг) при поступлении сигнала о перегреве подсистемы его питания на материнской плате.

Чем выше частота процессора и напряжение его питания, тем выше нагрузка на подсистему питания на материнской плате. Которая приводит к нагреву элементной базы (дроссели, транзисторы, конденсаторы), которая также может выйти из строя. При достижении температуры подсистемы питания до критического уровня (как правило 80 гр.по Цельсию), подсистема посылает об этом сигнал в процессор, который должен сбросить свою частоту, чтобы уменьшить нагрузку на подсистему питания.

Подсистемы питания, обладающие такой возможностью, входят в состав материнских плат компании ASUS и носят название Extreme Engine DIGI+ (I, II, III версии). И, вследствие этого, данный параметр можно встретить в БИОС (UEFI) материнских плат этой компании.

— Auto
— Disabled
— Enabled

Описание значений параметров:

Auto — Значение автоматически выбирается системой.
Disabled — Процессор будет игнорировать сигналы подсистемы питания о ее перегреве и не будет сбрасывать частоту. Выключать этот параметр стоит, если вы уверены, что компоненты подсистемы хорошо охлаждаются.
Enabled — Процессор будет сбрасывать частоту при перегреве подсистемы питания.

Проявление неисправностей: Отключение параметра может привести к повреждению материнской платы, особенно, если процессор разогнан.

Как «разогнать» встроенную видеокарту Vega на ПК (на ЦП от AMD Ryzen). Ускорение встроенной видеокарты

razgonyaem-vega

Доброго времени!

Во многих бюджетных ПК для офиса и дома ставят ЦП AMD Ryzen со встроенной графикой Vega (например, Vega 6, 8, 11 и др.). Работают они, в общем-то не плохо, и по сравнению с IntelHD — даже «на голову» впереди. Однако, всегда хочется большего. ��

И тут стоит сказать, что некоторые настройки BIOS/UEFI, которые стоят по умолчанию, могут «не давать» раскрыть потенциал карт до 20-30%! И, разумеется, слегка перепроверив и подредактировав их — можно разогнать (или лучше сказать увеличить производительность) этих встроенных карт (практически без рисков*).

Собственно, об этом и будет сегодняшняя заметка. Думаю, что «лишние» ~20% к FPS никому не помешают.

* Важно!

Как обычно в подобных статьях несколько предупреждений:

1. Всё, что делаете по советам ниже — на свой страх и риск.

2. Разгон — может стать причиной отказа в гарантийном обслуживании.

3. Перед разгоном рекомендую попробовать �� поднять FPS другими методами.

Повышение производительности AMD Vega Graphics

�� ШАГ 1: подготовка, первые рекомендации

Для работы нам понадобятся три утилиты:

  1. CPU-Z (ссылка на офиц. сайт). Можно обойтись, но в ней удобно быстро просматривать основные сведения о ЦП, видеокарте и ОЗУ;
  2. TechPowerUp — просмотр сведений о видеокарте (тех же частот ядра и памяти);
  3. FurMark — для тестов и сравнения, что было до разгона, а что после.

Также не могу в этом шаге не сделать одну важную ремарку: существенно на производительность встроенной видеокарты (APU) оказывает ОЗУ — задействован ли двухканальный режим работы. Обычно, если у вас две плашки ОЗУ — то двухканальный режим работы задействуется автоматически!

Чтобы узнать так ли это, посмотрите в утилите CPU-Z вкладку «Memory» , строку «Channel» . Если память работает в двухканальном режиме — увидите «Dual» .

Memory — двухканальный режим работы (CPU-Z)

Memory — двухканальный режим работы (CPU-Z)

Тем, у кого только одна плашка памяти — я бы прежде всего порекомендовал докупить еще одну. Это окажет существенный прирост к производительности (благо, что в �� китайских онлайн-магазинах, если нарваться на акцию, память можно взять за «бесценок». ).

Теперь ближе к делу.

�� ШАГ 2: частоты работы плашек ОЗУ и видеокарты

Прежде чем переходить к разгону, я рекомендую открыть утилиты TechPowerUp и FurMark (будут нужны обе одновременно) .

Посмотрите в TechPowerUp строки «GPU Clock», «Memory» (частоты работы графич. ядра и памяти) и «Bandwidth» (на cкрине ниже помечены стрелкой ��). Это дефолтные значения, которые нам нужно изменить (лучше их запомнить или записать).

Теперь запустите в FurMark стресс-тест (нажав по кнопке «GPU Stress test», никакие настройки менять не требуется). Крайне желательно убедиться, что во время стресс-теста температура не уходит далеко за 70°C, нет ошибок, артефактов и зависаний.

Тест видеокарты по умолчанию (утилиты TechPowerUp и FurMark)

Тест видеокарты по умолчанию (утилиты TechPowerUp и FurMark)

В моем примере выше: среднее (AVG) количество FPS составило 19 при температуре 45-50°C. Всё относительно стабильно, можно «разгонять».

После, нужно �� зайти в BIOS/UEFI и найти вкладку «Tweaker» (в разных версиях UEFI названия разделов могут быть отличны) . Среди различных настроек и разделов нам требуется найти две вещи:

  1. настройки частоты работы памяти. Обычно помечается как «DRAM Frequency» ;
  2. настройки вольтажа и частоты работы графич. ядра ( «GFX Clock Frequency» и «GFX Core Voltage» ).

Нам нужно Auto режим поменять на XMP 2.0 профайл (для ОЗУ), и установить частоту графич. ядра на ~5-10% выше базовой (которую мы уточняли в TechPowerUp чуть выше) .

  1. Auto режим обычно устанавливает частоту памяти в 2400 (вместо 3000/3200, которые «держат» большинство плашек и ЦП).
  2. Как все выглядит на мат. плате ASRock см. скриншот ниже.

Настройки ОЗУ и встроенной графики

Настройки ОЗУ и встроенной графики

На платах от Gigabyte — раздел с нужными настройками «M.I.T».

UEFI на платах Gigabyte

UEFI на платах Gigabyte

Важно!

Некоторые материнские платы не позволяют разгонять память и видеокарту (например, самые бюджетные на чипсетах A320 (в отличие от тех же B350/B450)).

Собственно, после изменения и сохранения настроек UEFI/BIOS — требуется снова запустить TechPowerUp и FurMark (и начать стресс-тест). Если вы обратите внимание на тест в FurMark — то количество FPS должно вырасти (в моем случае стало 25, было 19, т.е. FPS вырос на 30%!).

Тест видеокарты после изменения настроек (утилиты TechPowerUp и FurMark)

Тест видеокарты после изменения настроек (утилиты TechPowerUp и FurMark)

Разумеется, после таких изменений в BIOS нужно «погонять» карту в FurMark, посмотреть стабильность работы системы, будут ли ошибки, зависания и пр. Если таковые появятся — значит вы выставили слишком большие частоты в UEFI/BIOS и их требуется несколько снизить.

�� ШАГ 3: количество «выделенной» памяти

Для интегрированных (встроенных) видеокарт (Vega, IntelHD) видеопамять выделяется из «свободного» объема ОЗУ. Обычно, по умолчанию, этот процесс проходит автоматически.

Но стоит отметить, что далеко не всегда «авто-режим» работает оптимально. Обратите внимание на нижеприведенный тест: карта Vega 11 работает на 60-70% медленнее в тесте 3D Mark, если видеопамяти менее 1024 МБ! ��

3DMark Sky Driver (8GB Ram, dual)

3DMark Sky Driver (8GB Ram, dual)

Разумеется, если у вас на «борту» ноутбука/ПК 8 ГБ и более ОЗУ — есть смысл попробовать установить количество выделяемой памяти в 2 ГБ (что может существенно ускорить встроенную видеокарту!) .

Вообще, чтобы узнать текущий объем видеопамяти Vega — достаточно даже открыть диспетчер задач (в Windows 10; сочетание Ctrl+Alt+Del).

Диспетчер задач - Windows 10

Диспетчер задач — Windows 10

Для изменения количества выделяемой памяти (и откл. авто-режима) — необходимо �� войти в BIOS и найти один из следующих параметров : UMA Frame Buffer Size; iGPU Configuration; DVMT (Fixed Memory); Share Memory Size; Video Memory Size и пр. (примечание: в зависимости от вашей версии BIOS — называться он может по разному) .

�� В помощь!

Выделение памяти под встроенную видеокарту: как увеличить видеопамять у интегрированных IntelHD и AMD Ryzen Vega (UMA Frame Buffer Size)

UMA Frame Buffer Size — ставим 2 GB

UMA Frame Buffer Size — ставим 2 GB

Далее останется только вручную задать объем видеопамяти, сохранить настройки (в большинстве версий BIOS это клавиша F10) и перезагрузить компьютер/ноутбук.

�� ШАГ 4: настройка видеодрайвера

От версии и настроек видеодрайвера зависит многое: даже не только количество FPS в играх, но и в целом, стабильность работы системы.

Вообще, для начала бы порекомендовал �� обновить видеодрайвер (установить последнюю версию). После, в его настройках необходимо выставить ряд параметров — о них по ссылке в статье ниже (была уже ранее написана заметка ��).

Настройки видеокарты

Настройки видеокарты AMD

Как правило, за счет оптимизации настроек в видеодрайвере удается «выжать» до 10-20% к текущей производительности карты в играх. И это вполне себе не плохой результат!

�� ШАГ 5: «тонкая» настройка игры

Ну и последнее, что сильно влияет на FPS — это настройки графики в игре. Для увеличения производительности — попробуйте следующее:

  1. снизить детализацию (например, переключить с высокой на среднюю) ;
  2. отключить часть эффектов (дым, тени, брызги воды и т.д. — зависит от конкретной игры) ;
  3. снизить разрешение (например, вместо FullHD (1920×1080) перейти на HD (1280×720)) ;
  4. отключить вертикальную синхронизацию;
  5. попробовать перейти из полно-экранного режима в оконный (или наоборот). ��

Настройки графики для WOW Legion (кликабельно)

Настройки графики для WOW Legion (кликабельно)

Настройки CS-GO

В целом, проделав ряд описанных процедур выше, встроенные карточки Vega достаточно неплохо тянут все современные онлайн-хиты (на низких/средних настройках*) : Counter-Strike: Global Offensive, World of Tanks, World of Warcraft, Dota 2 и др. Заветные 50-60 кадров можно добиться достаточно легко. ��

На а я на сим доклад завершаю.

Дополнения в комментариях — приветствуются!

Первая публикация: 19.04.2020

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *