Хеш сумма что это простыми словами
Перейти к содержимому

Хеш сумма что это простыми словами

  • автор:

¶ Хэши

В блокчейн платформе Erachain реализован функционал создания хешей. Простыми словами Хэш — это цифровой отпечаток данных (контрольная сумма). Если говорить более научным языком, то:

Хеш или Хеш-функция — это математическая функция, которая преобразует ввод данных произвольной длины в зашифрованный вывод этих данных фиксированной длины.Таким образом, независимо от исходного количества данных или размера файла, его уникальный хэш всегда будет одного и того же размера.

Хэши нельзя использовать для «обратного преобразования» входных данных из хэшированных выходных данных, поскольку хэш-функции являются «односторонними».

Eсли использовать такую функцию для одних и тех же данных, её хэш будет идентичным, поэтому всегда можно проверить, что данные такие же, то есть без изменений, если вы уже знаете его хэш.

Использовать функционал хеширования данных полезно и удобно, например, при подписании каких-либо документов или сверки большого объёма информации на предмет её целостности и неизменности.

Подписанный договор можно захэшировать и послать оригинал этого документа своему партнёру на подпись, а с полученного договора с подписью второй стороны, вновь сделать хэш и сравнить его с хэшем, который был сделан изначально. Если хэши совпадут, то это означает, что в договор не вносилось никаких правок и изменений. Если же хэши не совпали, то договор был изменён вашим партнёром в одностороннем порядке без вашего ведома. Таким образом хэш подтверждает целостность и неизменность каких-либо данных, а также позволяет значительно сэкономить время на сверку документов.

Платформа Erachain позволяет создавать как Единичные хэши так и Привязанные.

  • Единичный хэш — это уникальный хэш, который может быть внесён в систему только один раз. Повторная попытка внесения этого же хеша будет отвергнута системой.
  • Привязанный хэш — это транзакция, которая содержит в себе список хэшей и URL-ссылку, по которой можно получить документы по этим хэшам.

Хеш — что это такое и как хэш-функция помогает решать вопросы безопасности в интернете

Здравствуйте, уважаемые читатели блога KtoNaNovenkogo.ru. Хочу продолжить серию статей посвященных различным терминам, которые не всегда могут быть понятны без дополнительных пояснений. Чуть ранее я рассказывал про то, что значит слово кликбейт и что такое хост, писал про IP и MAC адреса, фишинг и многое другое.

Хеш-код

Сегодня у нас на очереди хеш. Что это такое? Зачем он нужен? Почему это слово так часто используется в интернете применительно к совершенно разным вещам? Имеет ли это какое-то отношение к хештегам или хешссылкам? Где применяют хэш, как вы сами можете его использовать? Что такое хэш-функция и хеш-сумма? Причем тут коллизии?

Все это (или почти все) вы узнаете из этой маленькой заметки. Поехали.

Что такое хеш и хэширование простыми словами

Слово хеш происходит от английского «hash», одно из значений которого трактуется как путаница или мешанина. Собственно, это довольно полно описывает реальное значение этого термина. Часто еще про такой процесс говорят «хеширование», что опять же является производным от английского hashing (рубить, крошить, спутывать и т.п.).

Появился этот термин в середине прошлого века среди людей занимающихся обработках массивов данных. Хеш-функция позволяла привести любой массив данных к числу заданной длины. Например, если любое число (любой длинны) начать делить много раз подряд на одно и то же простое число , то полученный в результате остаток от деления можно будет называть хешем. Для разных исходных чисел остаток от деления (цифры после запятой) будет отличаться.

Для обычного человека это кажется белибердой, но как ни странно в наше время без хеширования практически невозможна работа в интернете. Так что же это такая за функция? На самом деле она может быть любой (приведенный выше пример это не есть реальная функция — он придуман мною чисто для вашего лучшего понимания принципа). Главное, чтобы результаты ее работы удовлетворяли приведенным ниже условиям.

Зачем нужен хэш

Смотрите, еще пример. Есть у вас текст в файле. Но на самом деле это ведь не текст, а массив цифровых символов (по сути число). Как вы знаете, в компьютерной логике используются двоичные числа (ноль и единица). Они запросто могут быть преобразованы в шестнадцатиричные цифры, над которыми можно проводить математические операции. Применив к ним хеш-функцию мы получим на выходе (после ряда итераций) число заданной длины (хеш-сумму).

Если мы потом в исходном текстовом файле поменяем хотя бы одну букву или добавим лишний пробел, то повторно рассчитанный для него хэш уже будет отличаться от изначального (вообще другое число будет). Доходит, зачем все это нужно? Ну, конечно же, для того, чтобы понять, что файл именно тот, что и должен быть. Это можно использовать в целом ряде аспектов работы в интернете и без этого вообще сложно представить себе работу сети.

Где и как используют хеширование

Например, простые хэш-функции (не надежные, но быстро рассчитываемые) применяются при проверке целостности передачи пакетов по протоколу TCP/IP (и ряду других протоколов и алгоритмов, для выявления аппаратных ошибок и сбоев — так называемое избыточное кодирование). Если рассчитанное значение хеша совпадает с отправленным вместе с пакетом (так называемой контрольной суммой), то значит потерь по пути не было (можно переходить к следующему пакету).

А это, ведь на минутку, основной протокол передачи данных в сети интернет. Без него никуда. Да, есть вероятность, что произойдет накладка — их называют коллизиями. Ведь для разных изначальных данных может получиться один и тот же хеш. Чем проще используется функция, тем выше такая вероятность. Но тут нужно просто выбирать между тем, что важнее в данный момент — надежность идентификации или скорость работы. В случае TCP/IP важна именно скорость. Но есть и другие области, где важнее именно надежность.

Похожая схема используется и в технологии блокчейн, где хеш выступает гарантией целостности цепочки транзакций (платежей) и защищает ее от несанкционированных изменений. Благодаря ему и распределенным вычислениям взломать блокчен очень сложно и на его основе благополучно существует множество криптовалют, включая самую популярную из них — это биткоин. Последний существует уже с 2009 год и до сих пор не был взломан.

Более сложные хеш-функции используются в криптографии. Главное условие для них — невозможность по конечному результату (хэшу) вычислить начальный (массив данных, который обработали данной хеш-функцией). Второе главное условие — стойкость к коллизиями, т.е. низкая вероятность получения двух одинаковых хеш-сумм из двух разных массивов данных при обработке их этой функцией. Расчеты по таким алгоритмам более сложные, но тут уже главное не скорость, а надежность.

Так же хеширование используется в технологии электронной цифровой подписи. С помощью хэша тут опять же удостоверяются, что подписывают именно тот документ, что требуется. Именно он (хеш) передается в токен, который и формирует электронную цифровую подпись. Но об этом, я надеюсь, еще будет отдельная статья, ибо тема интересная, но в двух абзацах ее не раскроешь.

Для доступа к сайтам и серверам по логину и паролю тоже часто используют хеширование. Согласитесь, что хранить пароли в открытом виде (для их сверки с вводимыми пользователями) довольно ненадежно (могут их похитить). Поэтому хранят хеши всех паролей. Пользователь вводит символы своего пароля, мгновенно рассчитывается его хеш-сумма и сверяется с тем, что есть в базе. Надежно и очень просто. Обычно для такого типа хеширования используют сложные функции с очень высокой криптостойкостью, чтобы по хэшу нельзя было бы восстановить пароль.

Какими свойствами должна обладать хеш-функция

Хочу систематизировать кое-что из уже сказанного и добавить новое.

  1. Как уже было сказано, функция эта должна уметь приводить любой объем данных (а все они цифровые, т.е. двоичные, как вы понимаете) к числу заданной длины (по сути это сжатие до битовой последовательности заданной длины хитрым способом).
  2. При этом малейшее изменение (хоть на один бит) входных данных должно приводить к полному изменению хеша.
  3. Она должна быть стойкой в обратной операции, т.е. вероятность восстановления исходных данных по хешу должна быть весьма низкой (хотя последнее сильно зависит от задействованных мощностей)
  4. В идеале она должна иметь как можно более низкую вероятность возникновения коллизий. Согласитесь, что не айс будет, если из разных массивов данных будут часто получаться одни и те же значения хэша.
  5. Хорошая хеш-функция не должна сильно нагружать железо при своем исполнении. От этого сильно зависит скорость работы системы на ней построенной. Как я уже говорил выше, всегда имеется компромисс между скорость работы и качеством получаемого результата.
  6. Алгоритм работы функции должен быть открытым, чтобы любой желающий мог бы оценить ее криптостойкость, т.е. вероятность восстановления начальных данных по выдаваемому хешу.

Хеш — это маркер целостности скачанных в сети файлов

Где еще можно встретить применение этой технологии? Наверняка при скачивании файлов из интернета вы сталкивались с тем, что там приводят некоторые числа (которые называют либо хешем, либо контрольными суммами) типа:

CRC32: 7438E546 MD5: DE3BAC46D80E77ADCE8E379F682332EB SHA-1: 332B317FB97126B0F79F7AF5786EBC51E5CC82CF

Что это такое? И что вам с этим всем делать? Ну, как правило, на тех же сайтах можно найти пояснения по этому поводу, но я не буду вас утруждать и расскажу в двух словах. Это как раз и есть результаты работы различных хеш-функций (их названия приведены перед числами: CRC32, MD5 и SHA-1).

Зачем они вам нужны? Ну, если вам важно знать, что при скачивании все прошло нормально и ваша копия полностью соответствует оригиналу, то нужно будет поставить на свой компьютер программку, которая умеет вычислять хэш по этим алгоритмам (или хотя бы по некоторым их них).

После чего прогнать скачанные файлы через эту программку и сравнить полученные числа с приведенными на сайте. Если совпадают, то сбоев при скачивании не было, а если нет, то значит были сбои и есть смысл повторить закачку заново.

Популярные хэш-алгоритмы сжатия

  1. CRC32 — используется именно для создания контрольных сумм (так называемое избыточное кодирование). Данная функция не является криптографической. Есть много вариаций этого алгоритма (число после CRC означает длину получаемого хеша в битах), в зависимости от нужной длины получаемого хеша. Функция очень простая и нересурсоемкая. В связи с этим используется для проверки целостности пакетов в различных протоколах передачи данных.
  2. MD5 — старая, но до сих пор очень популярная версия уже криптографического алгоритма, которая создает хеш длиной в 128 бит. Хотя стойкость этой версии на сегодняшний день и не очень высока, она все равно часто используется как еще один вариант контрольной суммы, например, при скачивании файлов из сети.
  3. SHA-1 — криптографическая функция формирующая хеш-суммы длиной в 160 байт. Сейчас идет активная миграция в сторону SHA-2, которая обладает более высокой устойчивостью, но SHA-1 по-прежнему активно используется хотя бы в качестве контрольных сумм. Но она так же по-прежнему используется и для хранения хешей паролей в базе данных сайта (об этом читайте выше).
  4. ГОСТ Р 34.11-2012 — текущий российский криптографический (стойкий к взлому) алгоритм введенный в работу в 2013 году (ранее использовался ГОСТ Р 34.11-94). Длина выходного хеша может быть 256 или 512 бит. Обладает высокой криптостойкостью и довольно хорошей скоростью работы. Используется для электронных цифровых подписей в системе государственного и другого документооборота.

HashTab — вычисление хеша для любых файлов на компьютере

Раз уж зашла речь о программе для проверки целостности файлов (расчета контрольных сумм по разным алгоритмам хеширования), то тут, наверное, самым популярным решением будет HashTab.

Она бесплатна для личного некоммерческого использования и покрывает с лихвой все, что вам может понадобиться от подобного рода софта. После ее скачивания и установки запускать ничего не надо. Просто кликаете правой кнопкой мыши по нужному файлу в Проводнике (или ТоталКомандере) и выбираете самый нижний пункт выпадающего меню «Свойства»:

Как узнать хеш файла

В открывшемся окне перейдите на вкладку «Хеш-суммы файлов», где будут отображены контрольные суммы, рассчитанные по нужным вам алгоритмам хэширования (задать их можно нажав на кнопку «Настройки» в этом же окне). По умолчанию отображаются три самых популярных:

Хеш-суммы файлов в программе HashTab

Чтобы не сравнивать контрольные суммы визуально, можно числа по очереди вставить в рассположенное ниже поле (со знаком решетки) и нажать на кнопку «Сравнить файл».

Как видите, все очень просто и быстро. А главное эффективно.

Удачи вам! До скорых встреч на страницах блога KtoNaNovenkogo.ru

Эта статья относится к рубрикам:

  • �� Binance — лучшая криптобиржа в мире
  • �� Эксмо — лучшая криптобиржа в рунете
  • ⛏ ВоркЗилла — удаленная работа для всех
  • �� Etxt — платят за написание текстов
  • ✍ Кьюкоммент — биржа комментариев
  • �� 60сек — выгодный обмен криптовалют
  • �� Вктаргет — заработок в соцсетях
  • �� Смотреть все.

Комментарии и отзывы (6)

Душевная благодарность за информацию ! Долго искал портативную версию, теперь установил по указанной ссылке, в «Настройках» отметил «популярные» — всё работает, думаю, что проблемные «закачки» теперь можно будет установить сразу после завершения процесса

Спасибо за столь объемную (много разных тем затрагивающую) статью и понятно описано

Я совсем далек от таких подробностей(музыкант),но начал читать и кажется продолжу свой ликбез.

Спасибо за труд!

Как же тогда взламывают пароли, да и просто похищают, если такая система стоит на страже? Значит можно всё взломать и похитить.

Ваш комментарий или отзыв

Хэш — что это такое? Определение, значение, перевод

Хэш

Хэш, он же хеш, это английское слово hash, которое в русском языке чаще всего употребляется в составных словах «хэш-функция», «хэш-сумма» или «хэш-алгоритм». Давайте попробуем разобраться, что это такое и для чего оно нужно.

Понятие «хэширование» означает детерминистское (однозначное и точно известное) вычисление набора символов фиксированной длины на основе входных данных произвольной длины. При этом изменение хотя бы одного символа в исходных данных гарантирует (с вероятностью, близкой к 100%), что и полученная фиксированная строка будет иной. Можно сказать, что хеширование это «снятие отпечатка» с большого набора данных.

Для чего всё это нужно? Давайте рассмотрим пример: вы скачали большой файл (положим, zip-архив) и желаете убедиться, что в нём нет ошибок. Вы можете узнать «хэш-сумму» (тот самый отпечаток) этого файла и сверить его с опубликованным на сайте. Если строки хэш-сумм различаются, то файл однозначно «битый».

Другой пример: чтобы обезопасить данные пользователей, банк не должен хранить их пароли такими, какие они есть, в своей базе данных. Вместо этого банк хранит хэш-суммы этих паролей и каждый раз при вводе пароля вычисляет его хэш-сумму и сверяет её с хранимой в базе. И тут возникает резонный вопрос о возможных «коллизиях», то есть одинаковых результатах хэширования разных паролей. Хорошая хэш-функция должна сводить коллизии к абсолютному минимуму, а для этого её нужно сделать довольно сложной и запутанной.

Понравилась страница?
Пожалуйста, поделитесь ссылкой с друзьями:

Закат эпохи алгоритма MD5?

Хеш-функция — функция, осуществляющая преобразование массива входных данных произвольной длины в выходную битовую строку установленной длины, выполняемое определенным алгоритмом. Преобразование, производимое хеш-функцией, называется хешированием. Результат преобразования называется хешем.

Хеш-функции применяются в следующих случаях:

  • При построении ассоциативных массивов.
  • При поиске дубликатов в последовательностях наборов данных.
  • При построении уникальных идентификаторов для наборов данных.
  • При вычислении контрольных сумм от данных для последующего обнаружения в них ошибок, возникающих при хранении и передаче данных.
  • При сохранении паролей в системах защиты в виде хеш-кода (для восстановления пароля по хеш-коду требуется функция, являющаяся обратной по отношению к использованной хеш-функции).
  • При выработке электронной подписи (на практике часто подписывается не само сообщение, а его хеш-образ).

С точки зрения математики, контрольная сумма является результатом хеш-функции, используемой для вычисления контрольного кода — небольшого количества бит внутри большого блока данных, например, сетевого пакета или блока компьютерного файла, применяемого для обнаружения ошибок при передаче или хранении информации. Значение контрольной суммы добавляется в конец блока данных непосредственно перед началом передачи или записи данных на какой-либо носитель информации. Впоследствии оно проверяется для подтверждения целостности данных. Популярность использования контрольных сумм для проверки целостности данных обусловлена тем, что подобная проверка просто реализуема в двоичном цифровом оборудовании, легко анализируется и хорошо подходит для обнаружения общих ошибок, вызванных наличием шума в каналах передачи данных.

MD5 — алгоритм хеширования, разработанный профессором Рональдом Л. Ривестом из Массачусетского технологического института в 1991 году. Предназначен для создания контрольных сумм или «отпечатков» сообщения произвольной длины и последующей проверки их подлинности. Алгоритм MD5 основан на алгоритме MD4.

Как работает протокол?

Утилита md5sum, предназначенная для хеширования данных заданного файла по алгоритму MD5, возвращает строку. Она состоит из 32 цифр в шестнадцатеричной системе счисления (016f8e458c8f89ef75fa7a78265a0025).

То есть хеш, полученный от функции, работа которой основана на этом алгоритме, выдает строку в 16 байт (128) бит. И эта строка включает в себя 16 шестнадцатеричных чисел. При этом изменение хотя бы одного ее символа приведет к последующему бесповоротному изменению значений всех остальных битов строки.

В данном алгоритме предполагается наличие 5 шагов, а именно:

  1. Выравнивание потока
  2. Добавление длины сообщения
  3. Инициализация буфера
  4. Вычисление в цикле
  5. Результат вычислений

На первом шаге “Выравнивание потока” сначала дописывают единичный бит в конец потока, затем необходимое число нулевых бит. Входные данные выравниваются так, чтобы их новый размер был сравним с 448 по модулю 512. Выравнивание происходит, даже если длина уже сравнима с 448.

На втором шаге в оставшиеся 64 бита дописывают 64-битное представление длины данных до выравнивания. Сначала записывают младшие 4 байта. Если длина превосходит то дописывают только младшие биты. После этого длина потока станет кратной 512. Вычисления будут основываться на представлении этого потока данных в виде массива слов по 512 бит.

На третьем для вычислений используются четыре переменные размером 32 бита и задаются начальные значения в 16-ричном виде. В этих переменных будут храниться результаты промежуточных вычислений.

Во время 4-го шага “Вычисление в цикле” происходит 4 раунда, в которых сохраняются значения, оставшиеся после операций над предыдущими блоками. После всех операций суммируются результаты двух последних циклов. Раундов в MD5 стало 4 вместо 3 в MD4. Добавилась новая константа для того, чтобы свести к минимуму влияние входного сообщения. В каждом раунде на каждом шаге и каждый раз константа разная. Она суммируется с результатом и блоком данных. Результат каждого шага складывается с результатом предыдущего шага. Из-за этого происходит более быстрое изменение результата. Изменился порядок работы с входными словами в раундах 2 и 3.

В итоге на 5-ом шаге мы получим результат вычислений, который находится в буфере это и есть хеш. Если выводить побайтово, начиная с младшего байта первой переменной и закончив старшим байтом последней, то мы получим MD5-хеш.

Уязвимости MD5

Алгоритм MD5 уязвим к некоторым атакам. Например, возможно создание двух сообщений с одинаковой хеш-суммой.

На данный момент существуют несколько видов взлома хешей MD5 — подбора сообщения с заданным хешем:

  • Перебор по словарю
  • Brute-force
  • RainbowCrack
  • Коллизия хеш-функции

При этом методы перебора по словарю и brute-force могут использоваться для взлома хеша других хеш-функций (с небольшими изменениями алгоритма). RainbowCrack требует предварительной подготовки радужных таблиц, которые создаются для заранее определённой хеш-функции. Поиск коллизий специфичен для каждого алгоритма. Рассмотрим каждый вид «взлома» по отдельности.

Атаки переборного типа

В криптографии атака полного перебора или исчерпывающий поиск ключей это стратегия, которая теоретически может быть использована против любых зашифрованных данных. Злоумышленник, который не может воспользоваться слабостью в системе шифрования, реализовывает атаку подобного типа. Она включает в себя систематическую проверку всех возможных ключей, пока не будет найден правильный. В худшем случае для взлома сообщения потребуется задействовать всю вычислительную мощность.

Перебор по словарю — атака на систему защиты, применяющая метод полного перебора предполагаемых паролей, используемых для аутентификации, осуществляемого путём последовательного пересмотра всех слов (паролей в чистом виде) определённого вида и длины из словаря с целью последующего взлома системы и получения доступа к секретной информации.

Как видно из определения, атаки по словарю являются атаками полного перебора. Единственное отличие состоит в том, что данные атаки обычно более эффективны так как становится не нужным перебирать все комбинации символов, чтобы добиться успеха. Злоумышленники используют обширные списки наиболее часто используемых паролей таких как, имена домашних животных, вымышленных персонажей или конкретно характерных слов из словаря – отсюда и название атаки. Однако если пароль действительно уникален (не является комбинацией слов), атака по словарю не сработает. В этом случае использование атаки полного перебора единственный вариант.

Для полного перебора или перебора по словарю можно использовать программы PasswordsPro, MD5BFCPF, John the Ripper. Для перебора по словарю существуют готовые словари.

RainbowCrack

Это ещё один метод взлома хеша. Он основан на генерировании большого количества хешей из набора символов, чтобы по получившейся базе вести поиск заданного хеша.

Радужные таблицы состоят из хеш-цепочек и более эффективны, чем предыдущий упомянутый тип атак, поскольку они оптимизируют требования к хранению, хотя поиск выполняется немного медленнее. Радужные таблицы отличаются от хеш-таблиц тем, что они создаются с использованием как хеш-функций, так и функций редукции.

Цепочки хешей — метод для уменьшения требования к объёму памяти. Главная идея — определение функции редукции R, которая сопоставляет значениям хеша значения из таблицы. Стоит отметить, что R не является обращением хеш-функции.

Радужные таблицы являются развитием идеи таблицы хеш-цепочек. Функции редукции применяются по очереди, перемежаясь с функцией хеширования.

Использование последовательностей функций редукции изменяет способ поиска по таблице. Поскольку хеш может быть найден в любом месте цепочки, необходимо сгенерировать несколько различных цепочек.

Существует множество систем взлома паролей и веб-сайтов, которые используют подобные таблицы. Основная идея данного метода — достижение компромисса между временем поиска по таблице и занимаемой памятью. Конечно, использование радужных таблиц не гарантирует 100% успеха взлома систем паролей. Но чем больше набор символов, используемый для создания радужной таблицы, и чем продолжительнее хеш-цепочки, тем больше будет шансов получить доступ к базе данных исходных паролей.

Коллизии MD5

Коллизия хеш-функции — это получение одинакового значения функции для разных сообщений и идентичного начального буфера. В отличие от коллизий, псевдоколлизии определяются как равные значения хеша для разных значений начального буфера, причём сами сообщения могут совпадать или отличаться. В 1996 году Ганс Доббертин нашёл псевдоколлизии в MD5, используя определённые инициализирующие векторы, отличные от стандартных. Оказалось, что можно для известного сообщения построить второе такое, что оно будет иметь такой же хеш, как и исходное. С точки зрения математики, это означает следующее:

где — начальное значение буфера, а и — различные сообщения.

MD5 был тщательно изучен криптографическим сообществом с момента его первоначального выпуска и до 2004 года демонстрировал лишь незначительные недостатки. Однако летом 2004 года криптографы Ван Сяоюнь и Фэн Дэнго продемонстрировали алгоритм способный генерировать MD5-коллизии с использованием стандартного вектора инициализации.

Позже данный алгоритм был усовершенствован, как следствие время поиска пары сообщений значительно уменьшилось, что позволило находить коллизии с приемлемой вычислительной сложностью. Как оказалось, в MD5 вопрос коллизий не решается.

Безопасное использование MD5

MD5 – до сих пор является одним из самых распространенных способов защитить информацию в сфере прикладных исследований, а также в области разработки веб-приложений. Хеш необходимо обезопасить от всевозможных хакерских атак.

Информационная энтропия

Энтропия

Надежность и сложность пароля в сфере информационных технологий обычно измеряется в терминах теории информации. Чем выше информационная энтропия, тем надежнее пароль и, следовательно, тем труднее его взломать.

Чем длиннее пароль и чем больше набор символов, из которого он получен, тем он надежнее. Правда вместо количества попыток, которые необходимо предпринять для угадывания пароля, принято вычислять логарифм по основанию 2 от этого числа, и полученное значение называется количеством «битов энтропии» в пароле. При увеличении длины пароля на один бит количество возможных паролей удвоится, что сделает задачу атакующего в два раза сложнее. В среднем, атакующий должен будет проверить половину из всех возможных паролей до того, как найдет правильный. В качестве наилучшей практики должно выполняться предварительное требование: приложение настаивает на том, чтобы пользователь использовал надежный пароль в процессе регистрации.

Добавление “соли” к паролю

Одна из наиболее распространенных причин успешных атак заключается в том, что компании не используют добавление соли к исходному паролю. Это значительно облегчает хакерам взлом системы с помощью атак типа радужных таблиц, особенно учитывая тот факт, что многие пользователи используют очень распространенные, простые пароли, имеющие одинаковые хеши.

Сольэто вторичный фрагмент информации, состоящий из строки символов, которые добавляются к открытому тексту (исходному паролю пользователя), а затем хешируется. Соление делает пароли более устойчивыми к атакам типа радужных таблиц, так как подобный пароль будет иметь более высокую информационную энтропию и, следовательно, менее вероятное существование в предварительно вычисленных радужных таблицах. Как правило, соль должна быть не менее 48 бит.

Декодирование кода MD5

Иногда при работе с компьютером или поврежденными базами данных требуется декодировать зашифрованное с помощью MD5 значение хеша.

Удобнее всего использовать специализированные ресурсы, предоставляющие возможность сделать это online:

  • md5.web-max.ca данный сервис обладает простым и понятным интерфейсом. Для получения декодированного значения нужно ввести хеш и заполнить поле проверочной капчи;
  • md5decrypter.com аналогичный сервис;
  • msurf.ru данный ресурс имеет простой русскоязычный интерфейс. Его функционал позволяет не только расшифровывать значения хеш-кодов, но и создавать их.

Если присмотреться к значениям декодинга, то становится понятно, что процесс расшифровки почти не дает результатов. Эти ресурсы представляют собой одну или несколько объединенных между собой баз данных, в которые занесены расшифровки самых простых слов.

При этом данные декодирования хеша MD5 даже такой распространенной части пароля, как «админ», нашлись лишь в одной базе. Поэтому хеши паролей, состоящих из более сложных и длинных комбинаций символов, практически невозможно расшифровать.

Создание хеша MD5 является односторонним процессом. Поэтому не подразумевает обратного декодирования первоначального значения.

Заключение

Как уже отмечалось ранее, основная задача любой функции хеширования сообщений производить образы, которые можно считать относительно случайными. Чтобы считаться криптографически безопасной, хэш-функция должна отвечать двум основным требованиям. Во-первых, злоумышленник не может сгенерировать сообщение, соответствующее определенному хеш-значению. Во-вторых, невозможно создать два сообщения, которые производят одно и то же значение (коллизии в MD5).

К сожалению, выяснилось, что алгоритм MD5 не способен отвечать данным требованиям. IETF (Internet Engineering Task Force) рекомендовала новым проектам протоколов не использовать MD5, так как исследовательские атаки предоставили достаточные основания для исключения использования алгоритма в приложениях, которым требуется устойчивость к различного рода коллизиям.

Хеши MD5 больше не считаются безопасными, и их не рекомендовано использовать для криптографической аутентификации.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *